Machine Learning in R

Jakub Glinka

Warsaw University
Department of Applied Statistics
kubaglinka@mimuw.edu.pl

4 pazdziernika 2009

Jakub Glinka

1.1 Types of machine learning algorithms

*Supervised Learning (Support Vector Machines)
*Unsupervised Learning (Neural Networks)
*Semi-supervised Learning (co-training)
*Reinforcement Learning (Policy Estimation)

*Transduction (TSVM)

Jakub Glinka

1.2 Machine Learning Tasks

» make a diagnosis based on some clinical measurements;

« assign the ASCII code to digitalized images of handwritten characters;
» predict whether a client will pay back a loan to a bank;

« assess the price of house based on certain characteristics;

 estimates the costs of claims of insurees based on insurance data.

Jakub Glinka

1.3 Machine Learning general settings

In the machine learning approach we assume that we have collected a
sequence

D = ((331,y1); ey (xn: yn))

of input/output pairs, from known sets X, Y respectively, that are used to
Jearn” a decision function :

fDIX“%Y

that is a good approximation of the possible response y to an arbitrary x.

Jakub Glinka

1.3 Machine Learning general settings

Obviously, in order to find such function, it is necessary that the
already collected data D have something in common with the new and
unseen data. In the framework of machine learning theory, this is
guaranted by assuming that both past and future pairs (x,y) are
independently generated by the same, but of course unknown,
probability P on XxY. Note that this is fundamental difference from
parametric models, in which the relationship between the inputs x and
the outputs yis assumed to follow some unknown function 7 from
known, finite-dimensional set of functions.

Jakub Glinka

2.1 SVM. Problem formulation

Def. Let P be probability measure on XxY. For measurable function 7 we
define L-risk as

Rip(h) = [Lley. f(@)dP(a,y)

JXxY

where function L is non-negative and measurable. In case of empirical
measure we get empirical L-risk:

Rrp(f) = % zn: Lz, yi, f (i)

Jakub Glinka

2.1 SVM. Problem formulation

As primal optimization problem SVM introduces minimalisation of
empirical counterpart of regularized L-risk functional:

R\ (f) == Rop(f) + M fli5¢

where H is certain possibly infinite-dimensional Hilbert space of functions.
One can show that without loss of generality

inf Rj5,\(f) = inf RiE,(f),
/e FEAT2 By

and so, lambda is a trade-off between complexity and quality of solution.

Jakub Glinka

2.1 SVM. Problem formulation

This is the moment where kernel trick comes to a play. We call function

E: X xX — R

a kernel if there exists hilbert space # and mapping
o: X —H

that function ks inner product in that space, namely

vaz,x’EX k(:L‘, ml) — <¢($)7 ¢(ZE/)>}(

Jakub Glinka

2.1 SVM. Problem formulation

One can show that for every kernel there is a canonical mapping on
certain hilbert space H given by

o(x) =k(,x), xe€X,
such that, k< has reproducing property, namely

Viesc Veex k(hx) eI i f(z) = ({f k(,2))a

and set of functions given below is dense in A/ and, most importantly, this
is the set used by SVM for regularized empirical risk minimisation.

n
Hpre 1= {Z ak(-,z;): meN, ai,...,an, €R, x1,..,0, € X}
i=1

Jakub Glinka

2.1 SVM. Problem formulation

Directly from the reproducing property of kernel it follows that

Vies. 5= D_ D oiojk(xs,a;) = aKa'

i=1 j=1

where K is semi-definite matrix, and so, if we consider convex loss function
L, in order to find the decision function we have to solve finite dimensional
convex program :

inf ——jijllituih,fwﬂ%))'+/XHfH9{-—

feHn

= min —ZL v,y e Kal) + aKa'
aER™ N “

Jakub Glinka

2.1 SVM. Problem formulation

Examples of popular kernels:
linear kernel

k(z,z') = (z,2') ,z,2' € RY
polynomial kernel
k(z,2') = ((z,2") +¢)™

gaussian kernel

|z — 2|3

,72

k., pa(z,z') = exp(—), 2’ € R

Jakub Glinka

2.1 SVM. Problem formulation

As for the loss function L, there are two commonly used in practice. For
classification tasks we have Ainge loss (or soft margin /0ss):

Lsar(x.y,t) = max{0,1 — yt} re R ye{-1.1}.t € R.

which penalizes lineary for misclassification, and epsilon insensitive loss
used mainly for regression problems:

Le(z,y,t) = max{0, |y — t| — €} re R ye{-1,1}.teR.

Jakub Glinka

2.2 SVM. C-classification.

If we consider simple binary classification task using soft margin loss we
are faced with primal problem called C-SVC.:

AL & Hw)|l

&> 1 — ygw(oz)(:zji)? & =20 i=1,...n
where

Yaern w(a) =) ap(w;)
i=1

Points with ¢_i>0 are called support vectors (SV). One can show that
point corresponding coeficient alpha is >0 iff this point is SV (sparsity of
the solution). Usually one adds threshold b to find slightly different

function
T
= Z%‘@(ﬂfz‘) +0
i=1

2.3 SVM. nu-classification.

Because in some cases finding value of parameter C in C-SVC can be
difficult there is nice modification of that previous algorithm called nu-SVC :

1 A2
a ‘Ee}%}}l}; bER N Zal Py o)l

Sz p—yi(wla)(e)+0), &=20 p=0 i=1,...n
Lets assume that alghorithm nu-SVC gave rho>0, and denote

i yi(w(e) (@) +b) < p}

as fraction of marginal errors. One can show that parameter nu is lower
bound on that fraction (and upper bound on fraction of SV). It can be also
shown that C-SVC with C equal to 1/rho produces the same solution.

Jakub Glinka

2.4 SVM. epsilon-regression.

If we consider regression task using epsilon-insensitive loss we are faced
with primal problem called epsilon-SVR:

min O3 (€ &) + 3 wlo)]3
1=1

a6 ERT
with respect to

> 07 57,—’_ Z i — (a)b(aj@) —€ 1= 13 reey T
P

[

& >0, & >wlap(r)—yi—€e i=1,..,n.

Note that thanks to this loss function we can achieve simillary to SVC
alghorithms sparsity of the solution. Hovewer unlike then we have two
parameters to adjust instead of one — C and epsilon. Epsilon can be
considered as a priori set level of accuracy of solution but in most cases
we want the solution to be as accurate as possible. To resolve this
problem one makes epsilon part of optimisation problem.

Jakub Glinka

2.5 SVM. nu-regression.

This modification is called nu-SVR, with primal problem shown below:

mn
1
' C tyer - 2
e B O2 G+ & e+ gl

with respect to

Lets assume that alghorithm nu-SVR ended with epsilon>0. One can
show that nu is upper bound on fraction of errors, where as an error we
denote points with distance of outputs more than epsilon from the decison
function (in other words outside epsilon-tube of decision function). It is
also lower bound on fraction of SVs.

Jakub Glinka

3.1 SVM In R. Package e1071 overview

The first implementation of SVM in R was introduced in the e1071
package. The svm() function provides a rigid interface to libsvm along
with visualization and parameter tuning methods. Libsvm is fast and
easy to use implementation of the most popular SVM formulations: C-
SVC, nu-SVC, epsilon and nu SVR. It includes the most common
kernels (linear, polynomial, gaussian and sigmoid), only extensible by
changing the C++ source code. For multi-class classification one-
against-one voting scheme is used. Package basically provides a
training function with standard and formula interfaces and a predict()
method. Hyperparameter tuning is done using the tune() framework
performing a grid search over specified parameter ranges. By default
the error measure is computed using 10-fold cross validation on the
given data.

Jakub Glinka

3.2 SVM In R. C-SVC with abalone dataset N=300

C-SVC should be used in case of multiclassification problems. Below is
sample code in R for prediction of class of age of abalone. We tune
hyperparameters of gaussian kernel:

>tune.svm(age~.,data=train.data2,type="C-classification",kernel="radial",cost=seq(.5,2.5,.5),cachesize=100,cross=10,gamma=1/8)
Parameter tuning of "'svm':
- sampling method: 10-fold cross validation
- best parameters:
gamma cost

0.125 0.5

- best performance: 0.28

We use best parameters to find a decision function and accuracy of
classifier

>model_radial<-svm(age~.,data=train.data2,type="C-classification",kernel="radial",cost=2,cross=10,gamma=1/8)
>mean(predict(model_radial,train.data2)==train.data2[,9])

[1] 0.7266667

Jakub Glinka

3.3 SVM In R. nu-SVC with Wisconsin dataset N=699

In most cases besides training accuracy we also asses accuracy on test set.

Below is sample code of predicting malignant cancer type.

J

> model<-svm(type~.,data=train.data,type="nu-classification",kernel="radial",nu=.077,gamma=0.015)

> summary(model)

Call:

svm(formula = type ~ ., data = train.data, type = "nu-classification", kernel = "radial", nu = 0.077, gamma = 0.015)

Performance of ‘'svim'
Parameters:

SVM-Type: nu-classification
SVM-Kernel: radial

gamma: 0.015 0.25
nu: 0.077
Number of Support Vectors: 52 0.20
(2032)
5 0.15

Number of Classes: 2

0.10
Levels:
24

0.05
> mean(predict(model,train.data)==train.data$type)
[1] 0.9752577

— 0.065

0.060

— 0.055

I I I I I I
> mean(predict(model,test.data)==test.data$type)

[1] 0.9626168

gamma

Jakub Glinka

0.06 008 010 012 014 016 018 0.20

0.050

0.045

0.040

0.035

3.4 SVM In R. nu-SVR toy example N=20

On the pictures below we see how width of the epsilon-tube changes with
data noise. (nu=.6)

Jakub Glinka

3.5 SVM In R. nu-SVR with Auto-mpg dataset N=398

Below is R code for predicting fuel consumption on Auto-mpg dataset.

> model<-svm(V1~.,data=train.data,type="nu-regression" kernel="radial",nu=.6,gamma=1/8,cost=1)
> summary(model)

Call:
svm(formula = V1 ~ ., data = train.data, type = "nu-regression”, kernel = "radial", nu = 0.6, gamma = 1/8, cost = 1)

Parameters: Histogram of train.data$v1
SVM-Type: nu-regression
SVM-Kernel: radial
cost: 1
gamma: 0.125
nu: 0.6

80
I

50
I

40

Number of Support Vectors: 213

Frequency
30
l

> mean(abs(predict(model,train.data)-train.data$Vvl)/train.data$Vv1)
[1] 0.04426202

> mean(abs(predict(model,train.data)-train.data$Vvl))

[1] 1.089199

> mean(abs(predict(model,test.data)-test.data$V1)/test.data$V1)

20
I

= 4

[1] 0.09294827]

> mean(abs(predict(model,test.data)-test.data$Vv1l)) ° 7 | | | |

[1] 2.231173 10 20 30 40
train.data$\V/1

Jakub Glinka

3.6 SVM In R. Other packages.

C-BSVC, spoc-SVC,
one-SVC, eps-SVR,

nu-SVR, eps-BSVR

ksvm() svmlight() svmpath()
(kernlab) (klaR) (svmpath)
Formulations C-SVC, nu-SVC, C-SVC, eps-SVR binary C-SVC

functions

Kernels Gaussian, polynomial, | Gaussian, polynomial, | Gaussian, polynomial,
linear, sigmoid, linear, sigmoid linear
Laplace, Bessel,
Anova, Spline
Model Hyperparameter NA regularization path for
Selection estimation for cost parameter
Gaussian kernels
Extensibility custom kernel NA custom kernel

functions

Jakub Glinka

References

Bernhard Scholkopf, A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA,2002. MIT Press.

Vladimir N. Vapnik. Statstical Learning Theory. 1998. Wiley and Sons.

Felipe Cucker, Ding Xuan Zhou. Learning Theory: An Approximation Theory
Viewpoint. 2007. Cambridge University Press.

Ingo Steinwart, Andreas Christmann. Support Vector Machines. Information Science
and Statistics. 2008. Springer.

Statistical Learning in R. Journal of Statistical Software. 2007.

Jacek Jakubowski, Rafal Sztencel. Wstep do teorii prawdopodobienstwa. Wydanie I11.
Warszawa 2004. SCRIPT.

Walter Rudin. Analiza Funkcjonalna. Warszawa 2009. PWN

Sam Waugh. Extending and benchmarking Cascade-Correlation. Phd Thesis, Computer
Science Department. 1995 University of Tasmania.

David Clark, Zoltan Schreter, Anthony Adams. A Quantitative Comparison of Dystal
and Backpropagation. Australian Conference on Neural Networks (ACNN’96).

O. L. Mangasarian, W. H. Wolberg. Cancer diagnosis via linear programming. STAM
News, Volume 23, Number 5, September 1990, pp 1 - 18.

Cios, K.J., Wedding, D.K. Liu. CLIP3: cover learning using integer programming.
Kybernetes, 26:4-5, pp 513-536, 1997

Jakub Glinka

