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Introduction

We are given a linear problem:

y=Xp+e¢
E(e)=0 Var(e) = 641,

where:
@ y is the vector of observations of length n,

@ X the design matrix n x (p+ 1), where the first column is a
ones vector,

@ X = (X1,X0,...,Xn)"
@ [ the coefficients vector of length (p + 1),

B=(Bo,B1---,Bp),

@ ¢ the random error of dimension n.
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Linear Regression

If we want to find an estimator p as a function of X and y which
minimizes the sum of the squared errors:

Z & = Z —x/B)?
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Linear Regression

Im(formula, data, subset, weights,. . .)
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Linear Regression

Im(formula, data, subset, weights,. . .)

However, in some conditions the linear regression doesn’t work
well:

@ p>n: the matrix (X7X) is invertible

@ the rows of the design matrix X are highly correlated: the p
coefficients are dependent on different x;

The next 4 models bring solutions to these problems.
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“Elastic net” regression

Regression “elastic net” solves the following problem:

n

a . 1
B = argpcge+ min [2,, ;(yi — X b)? + APy (by, ..., bp)]

where

o
Pa=) [;(1 — a)b? + oclbjl]

For different o we can have the following types of regression:

@ o =1lasso
@ « = 0ridge
@ « € (0,1) the general case of the elastic net

Agnieszka Prochenka Different types of regression: Linear, Lasso, Ridge, Elastic net, R«



“Elastic net” regression

Ridge regression is known to shrink the coefficients of
correlated predictors towards each other. Lasso is somewhat
indifferent to very correlated predictors and will tend to pick one
and ignore the rest.
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“Elastic net” regression

W pakiecie glmnet:
glmnet(x, y, weights, alpha,nlambda, lambda.min , lambda,...)
glmnet$ay; gimnet$beta
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“Elastic net” regression

W pakiecie glmnet:
glmnet(x, y, weights, alpha,nlambda, lambda.min , lambda,...)
glmnet$ay; gimnet$beta

literature: Friedman, Hastie, Tibshirani, “Regularization Paths
for Generalized Linear Models via Coordinate Descent”,
Stanford University, May 2008
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K-neighbors model

This method assumes calculating the j without estimating 3 .
For each observation x , minimizing the euclidean distance, we
find k closest observations from the design matrix X with
indexes ji,...,jk. y isthe arithmetic meanof y;,...,y .

A={1,...,n}

for (s in 1:k) {
ls:argjeAmin||xj—x||
A= A\{ls}

)

}A/ = mean(y,1 e ,y/k)
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Robust regression

M estimator minimizes a function:

n

> ole)=> olyi—x/B)

i=1 i=1

where p is the loss function.
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Robust regression

(M estimator

M estimator minimizes a function:

n n

> ole)=> olyi—x/B)

i=1 i=1

where p is the loss function.

Some examples of the loss functions:

Least-Squares

pLs(e) =e

s€, for |e| < k;

Prle) = { klel — 1e?, forle| > k.
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Robust regression

Bisquare

{ %2{17[14%)2]3}, for el < k;

2
il for |e| > k.

A graph of the loss functions with k = 1.345 for Huber,
k = 4.685 for Bisquare:
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Robust regression

W pakiecie RLMM:
rim(x, y, weights, psi = psi.huber,...)
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Mice example p > n

In this example the X matrix has dimensions n=54, p=1000 and
comes from real genetic data of mice, y was simulated.
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These are the sorted values of y — y for each model:
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Mice example p > n

Measuring the goodness of fit with the mean of the squared
errors RSS =3[, (y1; — x/B)?, we get:

model RSS

lasso 3.21
elastic net 2.45

ridge 2.37
k neighbors | 165.49

(The mean value of y; is 415)
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My master’s thesis

In my master’s thesis | am going to, looking at the data
structure, try to find the best model for predictions in this

situation.
@ | will numerously draw data
© Choose different parameters
© Try my models and look for some regularity

This is an example:
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| repeat N times building the real data list:

@ Drawing the matrix X from the p-dimensional normal
distribution with the correlation matrix

1 p p?
p 1 p
P2 p 1

@ Drawing ¢; from a normal distribution building the ¢ vector
© Choosing B
@ Calculating the real value of y, y; = x/p + ¢;

For the given data list | estimate the parameters for different
models and check which fit best (for example which minimizes
the sum of the squared loss). This is an example of what can
come out:
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3 uniformly decreases from 1 to 0; p =0.1; A = 0.5; n = 200;

N =250
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B=(1,0,1,0,1,...);p=0.9; A = 0.5; n = 200; N = 250
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