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1 General Description

Smooth test was introduced by Neyman (1937) to verify simple null hypothesis
asserting that observations obey completely known continuous distribution function
F . Smooth test statistic (with k components) can be interpreted as score statistic
in an appropriate class of auxiliary models indexed by a vector of parameters θ ∈
Rk, k ≥ 1. Pertaining auxilary null hypothesis asserts θ = θ0 = 0. Therefore, in this
case, the smooth test statistic based on n i.i.d. observations Z1, ..., Zn has the form

Wk =

[
1√
n

n∑
i=1

`(Zi)

]
I−1

[
1√
n

n∑
i=1

`(Zi)

]′
,

where `(Zi), i = 1, ..., n, is k-dimensional (row) score vector, the symbol ′ denotes
transposition, while I = Covθ0 [`(Z1)]

′[`(Z1)]. Following Neyman’s idea of modelling
underlying distributions one gets `(Zi) = (φ1(F (Zi)), ..., φk(F (Zi))) and I being the
identity matrix, where φj’s, j ≥ 1, are zero mean orthonormal functions on [0,1],
while F is the completely specified null distribution function.

In case of composite null hypothesis there is also unspecified vector of nuisance
parameters γ defining the distribution of observations. Smooth statistic (with k
components) in such applications is understood as efficient score statistic for some
class of models indexed by an auxiliary parmeter θ ∈ Rk, k ≥ 1. Pertaining efficient
score vector `∗(Zi; γ) is defined as the residual from projection the score vector for θ
onto the space spanned by score vector for γ. As such, smooth test is alternative
name for C(α) Neyman’s test. See Neyman (1959), Bühler and Puri (1966) as well
as Javitz (1975) for details. Hence, smooth test, based on n i.i.d. variables Z1, ..., Zn
rejects hypothesis θ = θ0 = 0 for large values of

W ∗
k (γ̃) =

[
1√
n

n∑
i=1

`∗(Zi; γ̃)

]
[I∗(γ̃)]−1

[
1√
n

n∑
i=1

`∗(Zi; γ̃)

]′
,

where γ̃ is an appropriate estimator of γ while I∗(γ) = Covθ0 [`
∗(Z1; γ)]′[`∗(Z1; γ)].

More details can be found in Janic and Ledwina (2008), Kallenberg and Ledwina
(1997 a,b) as well as Inglot and Ledwina (2006 a,b).

Auxiliary models, mentioned above, aim to mimic the unknown underlying model
for the data at hand. To choose the dimension k of the auxilary model we apply some
model selection criteria. Among several solutions already considered, we decided to
implement two following ones, pertaining to the two above described problems and
resulting Wk and W ∗

k (γ̃).
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The selection rules in the two cases are briefly denoted by T and T ∗, respectively,
and given by

T = min{1 ≤ k ≤ d : Wk − π(k, n, c) ≥ Wj − π(j, n, c), j = 1, ..., d}

and

T ∗ = min{1 ≤ k ≤ d : W ∗
k (γ̃)− π∗(k, n, c) ≥ W ∗

j (γ̃)− π∗(j, n, c), j = 1, ..., d}.

Both criteria are based on approximations of penalized loglikelihoods, where loglike-
lihoods are replaced by Wk and W ∗

k (γ̃), respectively. The penalties for the dimension
j in case of simple and composite null hypothesis are defined as follows

π(j, n, c) =

{
j log n, if max1≤k≤d |Yk| ≤

√
c log n,

2j, if max1≤k≤d |Yk| >
√
c log n

and

π∗(j, n, c) =

{
j log n, if max1≤k≤d |Y∗k | ≤

√
c log n,

2j, if max1≤k≤d |Y∗k | >
√
c log n,

respectively, where c is some calibrating constant, d is maximal dimension taken into
account, (Y1, ...,Yk) = [ 1√

n

∑n
i=1 `(Zi)]I−1/2 while (Y∗1 , ...,Y∗k) = [ 1√

n

∑n
i=1 `

∗(Zi; γ̃)][I∗(γ̃)]−1/2.
In consequence, data driven smooth tests for the simple and composite null hypoth-
esis reject for large values of WT and WT ∗ = WT ∗(γ̃), respectively. For details see
Inglot and Ledwina (2006 a,b,c).

The choice of c in T and T ∗ is decisive to finite sample behaviour of the selection
rules and pertaining statistics WT and WT ∗(γ̃). In particular, under large c’s the
rules behave similarly as Schwarz’s (1978) BIC while for c = 0 they mimic Akaike’s
(1973) AIC. For moderate sample sizes, values c ∈ (2, 2.5) guarantee, under ‘smooth’
departures, only slightly smaller power as in case BIC were used and simultaneously
give much higher power than BIC under multimodal alternatives. In genral, large c′s
are recommended if changes in location, scale, skewness and kurtosis are in principle
aimed to be detected. For evidence and discussion see Inglot and Ledwina (2006 c).

It c > 0 then the limiting null distribution of WT and WT ∗(γ̃) is central chi-squared
with one degree of freedom. In our implementation, for given n, both critical values
and p-values are computed by MC method.

Empirical distributions of T and T ∗ as well as WT and WT ∗(γ̃) are not essentially
influenced by the choice of reasonably large d’s, provided that sample size is at least
moderate.
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2 Data Driven Smooth Test for Uniformity

Embeding null model into the original exponential family introduced by Neyman
(1937) leads to the information matrix I being identity and smooth test statistic
with k components

Wk =
1√
n

k∑
j=1

n∑
i=1

[φj(Zi)]
2 ,

where φj is jth degree normalized Legendre polynomial on [0,1] (default value of pa-
rameter base = ‘ddst.base.legendre’). Alternatively, in our implementation, cosine
system can be selected (base = ‘ddst.base.cos’). For details see Ledwina (1994) and
Inglot and Ledwina (2006).

An application of the pertaining selection rule T for choosing k gives related ‘ddst.unif.test()’
based on statistic WT .

Similar approach applies to testing goodness-of-fit to any fully specified continuous
distribution function F . For this purpose it is enough to apply the above solution
to transformed observations F (z1), ..., F (zn).
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Code examples

keep.source=TRUE

library(ddst)

## Loading required package: orthopolynom

## Loading required package: polynom

## Loading required package: evd

# for given vector of 19 numbers

z = c(13.41, 6.04, 1.26, 3.67, -4.54, 2.92, 0.44, 12.93, 6.77, 10.09,

4.10, 4.04, -1.97, 2.17, -5.38, -7.30, 4.75, 5.63, 8.84)

ddst.uniform.test(z, compute.p=TRUE)

##

## Data Driven Smooth Test for Uniformity

##
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## data: z, base: ddst.base.legendre c: 2.4

## WT = 1.9112e+33, n. coord = 10, p-value < 2.2e-16

# when H0 is true

z = runif(80)

ddst.uniform.test(z, compute.p=TRUE)

##

## Data Driven Smooth Test for Uniformity

##

## data: z, base: ddst.base.legendre c: 2.4

## WT = 2.9852, n. coord = 1, p-value = 0.146

# for known fixed alternative, here N(10,16)

ddst.uniform.test(pnorm(z, 10, 16), compute.p=TRUE)

##

## Data Driven Smooth Test for Uniformity

##

## data: pnormz1016, base: ddst.base.legendre c: 2.4

## WT = 519.07, n. coord = 10, p-value < 2.2e-16

# when H0 is false

z = rbeta(80,4,2)

(t = ddst.uniform.test(z, compute.p=TRUE))

##

## Data Driven Smooth Test for Uniformity

##

## data: z, base: ddst.base.legendre c: 2.4

## WT = 38.928, n. coord = 3, p-value < 2.2e-16

t$p.value

## [1] 0
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3 Data Driven Smooth Test for Exponentiality

Null density is given by

f(z; γ) = exp{−z/γ} for z ≥ 0

and 0 otherwise. Modelling alternatives similarly as in Kallenberg and Ledwina
(1997 a,b), e.g., and estimating γ by γ̃ = 1

n

∑n
i=1 Zi yields the efficient score vector

`∗(Zi; γ̃) = (φ1(F (Zi; γ̃)), ..., φk(F (Zi; γ̃))), where φj’s are jth degree orthonormal
Legendre polynomials on [0,1] or cosine functions

√
2 cos(πjx), j ≥ 1, while F (z; γ)

is the distribution function pertaining to f(z; γ). The matrix [I∗(γ̃)]−1 does not
depend on γ̃ and is calculated for succeding dimensions k using some recurrent rela-
tions for Legendre’s polynomials and computed in a numerical way in case of cosine
basis. In the implementation the default value of c in T ∗ is set to be 100. There-
fore, T ∗ practically coincides with S1 considered in Kallenberg and Ledwina (1997 a).
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Code examples

# for given vector of 19 numbers

z = c(13.41, 6.04, 1.26, 3.67, -4.54, 2.92, 0.44, 12.93, 6.77, 10.09,

4.10, 4.04, -1.97, 2.17, -5.38, -7.30, 4.75, 5.63, 8.84)

ddst.exp.test(z, compute.p=TRUE)

##

## Data Driven Smooth Test for Expotentiality

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 81.353, n. coord = 5, p-value < 2.2e-16

# when H0 is true

z = rexp(80,4)

ddst.exp.test (z, compute.p = TRUE)

##

## Data Driven Smooth Test for Expotentiality

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 0.21797, n. coord = 1, p-value = 0.658

# when H0 is false

z = rchisq(80,4)

ddst.exp.test (z, compute.p = TRUE)
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##

## Data Driven Smooth Test for Expotentiality

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 9.2498, n. coord = 1, p-value = 0.021
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4 Data Driven Smooth Test for Normality

Null density is given by

f(z; γ) =
1√

2πγ2
exp

{
−(z − γ1)2

2γ22

}
for z ∈ R.

We model alternatives similarly as in Kallenberg and Ledwina (1997 a,b) using Leg-
endre’s polynomials or cosine basis. The parameter γ = (γ1, γ2) is estimated by γ̃ =
(γ̃1, γ̃2), where γ̃1 = 1

n

∑n
i=1 Zi and γ̃2 = 1

n−1
∑n−1
i=1

Zn:i+1−Zn:i

Hi+1−Hi
, while Zn:1 ≤ ... ≤ Zn:n

are ordered values of Z1, ..., Zn and Hi = Φ−1
(
i−3/8
n+1/4

)
, cf. Chen and Shapiro (1995).

The above yields auxiliary test statistic W ∗
k (γ̃) described in details in Janic and

Ledwina (2008), in case when Legendre’s basis is applied. The pertaining matrix
[I∗(γ̃)]−1 does not depend on γ̃ and is calculated for succeding dimensions k using
some recurrent relations for Legendre’s polynomials and is computed in a numerical
way in case of cosine basis. In the implementation of T ∗ the default value of c is
set to be 100. Therefore, in practice, T ∗ is Schwarz-type criterion. See Inglot and
Ledwina (2006) as well as Janic and Ledwina (2008) for comments. The resulting
data driven test statistic for normality is WT ∗ = WT ∗(γ̃).
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Code examples

# for given vector of 19 numbers

z = c(13.41, 6.04, 1.26, 3.67, -4.54, 2.92, 0.44, 12.93, 6.77, 10.09,

4.10, 4.04, -1.97, 2.17, -5.38, -7.30, 4.75, 5.63, 8.84)

ddst.norm.test(z, compute.p=TRUE)

##

## Data Driven Smooth Test for Normality
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##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 0.13095, n. coord = 1, p-value = 0.7201

# when H0 is true

z = rnorm(80)

ddst.norm.test(z, compute.p=TRUE)

##

## Data Driven Smooth Test for Normality

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 0.0056928, n. coord = 1, p-value = 0.9463

# when H0 is false

z = rexp(80,4)

ddst.norm.test(z, B=5000, compute.p=TRUE)

##

## Data Driven Smooth Test for Normality

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 185.8, n. coord = 5, p-value = 5.414e-13
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5 Data Driven Smooth Test for Extreme Value

Distribution

Null density is given by

f(z; γ) =
1

γ2
exp

{z − γ1
γ2

− exp
(z − γ1

γ2

)}
, z ∈ R.

We model alternatives similarly as in Kallenberg and Ledwina (1997) and Janic-
Wróblewska (2004) using Legendre’s polynomials or cosines. The parameter γ =
(γ1, γ2) is estimated by γ̃ = (γ̃1, γ̃2), where γ̃1 = − 1

n

∑n
i=1 Zi+εG, where ε ≈ 0.577216

is the Euler constant and G = γ̃2 = [n(n − 1) ln 2]−1
∑

1≤j<i≤n(Zo
n:i − Zo

n:j) while
Zo
n:1 ≤ ... ≤ Zo

n:n are ordered variables −Z1, ...,−Zn, cf Hosking et al. (1985). The
above yields auxiliary test statistic W ∗

k (γ̃) described in details in Janic and Ledwina
(2008), in case when Legendre’s basis is applied. The related matrix [I∗(γ̃)]−1 does
not depend on γ̃ and is calculated for succeding dimensions k using some recurrent
relations for Legendre’s polynomials and numerical methods for cosine functions. In
the implementation the default value of c in T ∗ was fixed to be 100. Hence, T ∗

is Schwarz-type model selection rule. The resulting data driven test statistic for
extreme value distribution is WT ∗ = WT ∗(γ̃).
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Code examples

# for given vector of 19 numbers

z = c(13.41, 6.04, 1.26, 3.67, -4.54, 2.92, 0.44, 12.93, 6.77, 10.09,

4.10, 4.04, -1.97, 2.17, -5.38, -7.30, 4.75, 5.63, 8.84)

ddst.extr.test(z, compute.p=TRUE)

##

## Data Driven Smooth Test for Extreme Values

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 1.9073, n. coord = 1, p-value = 0.594
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# when H0 is true

library(evd)

z = -qgumbel(runif(100),-1,1)

ddst.extr.test (z, compute.p = TRUE)

##

## Data Driven Smooth Test for Extreme Values

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 0.08588, n. coord = 1, p-value = 1

# when H0 is false

z = rexp(80,4)

ddst.extr.test (z, compute.p = TRUE)

##

## Data Driven Smooth Test for Extreme Values

##

## data: z, base: ddst.base.legendre, c: 100

## WT* = 7762.2, n. coord = 5, p-value = 0.002
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